

Изучение процесса е⁺е⁻ →ηπ⁰γ в области энергии √s =1.05-2.00 ГэВ с детектором СНД

Л.В.Кардапольцев

ИЯФ СО РАН

19 июня 2020

- Процесс e⁺e⁻ → ηπ⁰γ изучается в диапазоне энергии в с.ц.м. от 1.05 до 2.00 ГэВ
- В этом диапазоне энергии сечение $e^+e^- \rightarrow \eta \pi^0 \gamma$ измерено впервые
- Процесс изучался в пятифотонном конечном состоянии
- Доминирующий вклад в сечение дает процесс $e^+e^- \rightarrow \omega \eta$ с распадом $\omega \rightarrow \pi^0 \gamma$
- Сечение е⁺е⁻ → ω<mark>η измерялось в канале ω→3</mark>π на СНД, КМД-3, BaBar
- Наибольший интерес представляет поиск радиационных процессов, в которых фотон излучается возбужденным векторным мезоном

Детектор СНД

1 – вакуумная камера, 2 – трековая система, 3 – аэрогелевые черенковские счетчики, 4 – кристаллы NaI(Tl), 5 – фототриоды, 6 – железный поглотитель, 7–9 – мюонный детектор, 10 – фокусирующие соленоиды ВЭПП-2000.

Детектор СНД набирал данные на ВЭПП-2000 в 2010-2013 г и с 2016 по настоящее время

- Главная физическая задача СНД это изучение всех возможных процессов е⁺е⁻ аннигиляции в адроны ниже 2 ГэВ.
- Полное адронное сечение, которое вычисляется как сумма эксклюзивных сечений
- Изучение динамики
 эксклюзивных процессов
 - Изучение свойств возбужденных векторных мезонов семейства
 ρ, ω, φ

- Для анализа были использованы данные набранные в 2010, 2011, 2012 и 2017 гг.
- Интегральная светимость составила 94.5 пб⁻¹

■ Для измерения светимости был использован процесс е⁺е⁻ → үү

- Этот процесс имеет общие
 систематические ошибки с изучаемым
 и они сокращаются при нормировке
 учет наложений пучкового фона
 учет постерения светимости 2%
- Данные объединены в 13 интервалов
 по энергии

Основные фоновые процессы

Фон

- ■Основной фоновый процесс $e^+e^- \rightarrow \omega \pi^0 \rightarrow \pi^0 \pi^0 \gamma$
- Также заметный вклад дают процессы КЭД е⁺e⁻ → 3ү,4ү,5ү
- Вклад в фон проверялся также для следующих процессов: $e^+e^- \rightarrow \omega \pi^0 \pi^0$, $e^+e^- \rightarrow \omega \eta \pi^0$, $e^+e^- \rightarrow \eta \gamma$, $e^+e^- \rightarrow \pi^0 \gamma$, $e^+e^- \rightarrow K_S K_L$, $e^+e^- \rightarrow K_S K_L \pi^0$, $e^+e^- \rightarrow K_S K_L \pi^0 \pi^0$

Вклад других промежуточных состояний

- Также важно учесть вклад от процессов $e^+e^- \rightarrow \eta \pi^0 \gamma$ с промежуточными состояниями р η , ф η и ф π^0 . Их вклад мал, но в рамках данного анализа его невозможно отличить от rad- $\eta \pi^0 \gamma$
- Их вклад был вычислен и зафиксирован N_{res} = 19.6 ± 1.3
- Вклад от ρπ⁰, ωπ⁰ незначителен.

- Ровно 5 фотонов, нет треков
- Кинематическая реконструкция
 в гипотезах:
- $e^+e^- \rightarrow \eta \pi^0 \gamma$, $e^+e^- \rightarrow \pi^0 \pi^0 \gamma$, $e^+e^- \rightarrow 5\gamma$, $e^+e^- \rightarrow 3\gamma$
- χ²_{5γ} < 30
- $\chi^2_{\pi\pi\gamma} \chi^2_{5\gamma} > 80$, $\chi^2_{3\gamma} > 50$
- Сигнальная область:

 ²_{ηπγ} χ²_{5γ} < 10

- Контрольная область:
 10 < χ²_{ηπγ} χ²_{5γ} < 60

Определение числа событий

- Для определения числа сигнальных событий проводилась совместная подгонка m(π⁰γ) для сигнальной области и χ²_{ηπγ} - χ²_{5γ} в контрольной области
- Подгонка проводилась суммой 4 вкладов:
- 1) $e^+e^- \rightarrow \omega \eta \rightarrow \eta \pi^0 \gamma$ 2) $e^+e^- \rightarrow rad \eta \pi^0 \gamma$ 3) $e^+e^- \rightarrow \rho \eta$, $\phi \eta$, $\phi \pi^0 \rightarrow \eta \pi^0 \gamma$ 4)Фон
- Вклады для ωη, rad-ηπ⁰γ и фона были свободными параметрами

 Соотношения между числами событий в сигнальной и контрольной областях:

 $N^{C}_{\eta\pi\gamma} = k_{sig} \cdot N_{\eta\pi\gamma}; \qquad N_{bkg} = k_{bkg} \cdot N^{C}_{bkg}$

К k_{sig} применялась поправка R = 1.5 ± 0.3
 которая определялась по событиям ωη

 Ошибка k_{bkg} определялась варьированием сечений фоновых процессов

■ k_{sig}=0.22±0.04, k_{bkg}=0.53±0.01 (1.05-2.00 ГэВ)

Определение числа событий

- Величины Δm и Δσ² определялись из сравнения эксперимента и моделирования
- Величина Δσ² сравнима с нулем, так что дополнительное размытие в моделирование не вводилось

- Для определения систематических погрешностей в функцию
 правдоподобия вводились параметры соответствующие Δm, Δσ², N_{res} k_{sig}, k_{bkg}
- •На эти параметры накладывались гауссовы ограничения
- Погрешность за счет процедуры определения числа событий

ωη:2 - 27%rad-ηπ⁰γ:4 - 15%

Результат подгонки т(π⁰γ) и χ²_{ηπγ} - χ²_{5γ}

Результат подгонки для всех событий в интервале 2E=1.05-2.00 ГэВ

Результат подгонки т(π⁰γ) и χ²_{ηπγ} - χ²_{5γ}

- Результат подгонки для всех событий в интервале 2E=1.05-2.00 ГэВ
- Обнаружено около 100 событий процесса e⁺e⁻→rad-ηπ⁰γ

- Результат подгонки для всех событий в интервале 2E=1.05-2.00 ГэВ
- Обнаружено около 100 событий процесса e⁺e⁻→rad-ηπ⁰γ
- Ожидаемое и полученное из подгонки числа событий фона
 хорошо согласуются

Выбор модели для rad-ηπγ

- Были рассмотрены 3 модели: e⁺e⁻→a₀(980)γ, e⁺e⁻→a₀(1450)γ, e⁺e⁻→a₂(1270)γ
- Для определения их комбинации, лучше всего описывающей данные, двумерное распределение m(ηπ):m(πγ) было подогнано

 $α P_{a2(1270)γ} + β P_{a0(980)γ} + (1 - α - β) P_{a0(1450)γ}$

- В результате получились α=0.22±0.21 и β=0.0^{+0.09}
- Полученные значения для α и β использовались для вычисления эффективности регистрации, а их ошибки для оценки модельной зависимости эффективности
- Значимость вклада от радиационных процессов:
 2D[m(ηπ):m(πγ)]: -2ln(L₀/L₃) = 42.3 → 5.8σ (сист.)

Удалены события с

700 M₉B < m(πγ) < 900 M₉B

Эффективность регистрации

Поправка к эффективности регистрации определялась по событиям e⁺e⁻→ωη

χ² _{ηπγ} - χ² _{5γ} (10 →60)	(-5.6 ± 4.5)%
χ² _{5γ} (30→60)	(-0.5 ± 3.3)%
χ² _{ππγ} - χ² _{5γ} (80→10)	(1.2 ± 2.1)%
χ² _{3γ} (50→0)	(-0.8 ± 1.1)%
Конверсия фотона (е⁺е⁻→үү)	(-0.79 ± 0.02)%
N _γ ==5 (e⁺e⁻→ωπ⁰)	(-0.4 ± 0.2)%
Итого	(-6.9 ± 6.1)%

Итого

Л.В.Кардапольцев ИЯФ СО РАН 2020

Радиационные поправки

 Для вычисления радиационных поправок определялась зависимость эффективности регистрации от энергии рад. фотона ε(x), x=E_r/2E

 ε(x)/ε(0) слабо зависит от энергии пучков и практически не зависит от промежуточного механизма e⁺e⁻→ηπ⁰γ

 Для вычисления рад. поправок использовались выражения:

$$\begin{split} \sigma_{vis}(s) &= \int_{0}^{x_{max}} \epsilon(s,x) F(x,s) \sigma \big(s(1-2x) \big) dx \\ \sigma_{vis} &= \frac{N}{L} \ , \qquad \sigma_{vis}(s) = \epsilon(s) \sigma(s) (1+\delta(s)) \end{split}$$

Для определения модельной зависимости рад. поправок параметры подгонки для σ(s) варьировались внутри ошибок

Сечение $e^+e^- \rightarrow \omega \eta \rightarrow \eta \pi^0 \gamma$

Для аппроксимации было использовано выражение

$$\sigma(s) = \frac{12\pi}{s^{3/2}} \left| \sqrt{\frac{B_{V'}}{P_f(m_{V'})}} \frac{m_{V'}^{3/2} \Gamma_{V'}}{D_{V'}} + \sqrt{\frac{B_{V'}}{P_f(m_{V'})}} \frac{m_{V'}^{3/2} \Gamma_{V'}}{D_{V'}} e^{i\varphi} \right|^2 P_f(s)$$

где $B_V = B(V \rightarrow e^+e^-)B(V \rightarrow \omega \eta)$

 Полученное сечение хорошо согласуется с предыдущими измерениями СНД и КМД-3 и противоречит BABAR

В области 1.89-2.00 ГэВ вклады амплитуд V' и V'' сокращаются

 $σ_{this work} = 0.6 \pm 1.8 π 6$ $σ_{SND(3\pi)} = -4.0 \pm 2.5 π 6$ $σ_{CMD-3(3\pi)} = 6.1 \pm 2.3 π 6$

Сечения $e^+e^- \rightarrow rad-\eta\pi\gamma$

	Fit
т _{v′} , МэВ	1415 ±52
Г _{v'} , МэВ	247 ± 81
B(V'→e⁺e⁻) B(V'→rad-ηπγ)	$(4 \pm 2) \times 10^{-10}$
χ²/n.d.f.	10.8/10

 При аппроксимации сечения предполагалось, что оно определяется распадом V'→a₀(1450)γ

 Сечение составляет 10-15 пб в широком диапазоне энергии
 1.3-1.9 ГэВ

Полное сечения $e^+e^- \rightarrow \eta \pi \gamma$

$$\sigma_{vis} = \frac{1}{L} \left(N_{\omega\eta} + \frac{\varepsilon_{\omega\eta}}{\varepsilon_{rad}} N_{rad} + \frac{\varepsilon_{\omega\eta}}{\varepsilon_{res}} N_{res} \right)$$

≼ Систематические погрешности 📢

Источник	ωη (1.64-1.70 ΓэΒ)	ωη (1.84-2.00 ΓэΒ)	rad-ηπγ	ηπγ
Светимость	2%	2%	2%	2%
Условия отбора	6%	6%	6%	6%
Определение числа событий	2%	20-27%	4-35%	1-15%
Модельная зависимость эффективности	-	-	2-3%	0.5-3%
Интерференция с рղ	5%	24-37%	-	—
Рад. поправки	1%	13-27%	1-3%	1-6%
Итого	8%	40-50%	8-35%	6-18%

Для оценки вклада интерференции с р
 пр вычислялись сечений

$$A_{\pm} = A_{\omega\eta} \pm A_{\rho\eta}, \qquad \sigma_{int} = (\sigma_{+} - \sigma_{-})/2$$

Во всем диапазоне энергии точность определяется статистической ошибкой

В области энергии от порога рождения до 2 ГэВ измерено сечение е⁺e⁻ → ωη

 Измерение согласуется с предыдущими измерениями СНД и КМД-3 и имеет сравнимую точность

 С достоверностью на уровне 5.8σ установлено, что сечение процесса e⁺e⁻ → ηπ⁰γ не полностью объясняется адронными промежуточными состояниям типа вектор-псевдоскаляр.

Статья в arxiv https://arxiv.org/abs/2006.05465