Процессы e⁺e⁻ -> π⁺π⁻π⁺π⁻π⁺π⁻, π⁺π⁻π⁺π⁻ вблизи порога рождения нуклонов

Солодов Е.П. КМД-3 Коллаборация

6 пи до ВЭПП2000

- Наюлюдалось интересное поведение сечения
- Попытка описать провал как интерференцию с узким резонансом на (под) пороге NNbar

Сечение процесса е⁺е⁻ -> 3(π⁺π[−])

Ничего похожего в 4 пи!?

Данные БаБар и предварительные КМД-3

Мотивация для 2017 data taking

26/01-20/06/2017 CMD3 collected Luminosity as of 22.06.2017 1/nb/20MeV 10⁴ BaBar effective Luminosity 0.35<0 <2.4rad, L BaBar=470 Δ 2E = 20 MeV, 10³ 10² per 600 800 1000 1200 1400 1600 1800 2000 400 2E, MeV

CMD-3

In 2017: big improvement in luminosity at high energy, still way to go

Collected data at "high" energies

About 50 pb ⁻¹ collected				
2.007 GeV ($e^+e^- \rightarrow D^{0*}$)	4 1/pb			
$par{p}$ and $nar{n}$ threshold	14 1/pb			
Overall:				
1.28 – 2.007 GeV	50 1/pb			

Overview of CMD-3 data taking runs

CMD-3 Integrated Luminosity

Отбор событий

Отработано на сканировании 2011, 2012 г.г., повторено заново для 2011,2012,2017

В событии есть 5 или 6 "хороших" треков (3 и 4 для 4пи):

- минимум 5 точек на треке
- импульс Ptot > 40 MeV/c
- растояние до пучка Rmax < 0.5 cm
- растояние до центра места встречи |Z|<10 cm
- полярный угол достаточный для прохождения 10 см в ДК

Нет событий с 6 треками ниже 1.5 ГэВ - Анализ для Ес.м. 1.5 – 2.0 ГэВ Нет событий с 8 треками Несколько событий с 7 треками << 1%

Example of $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-\pi^+\pi^-$ from CMD-3

Example of $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-\pi^+\pi^-$ from CMD-3

Основные параметры – полная энергия и полный импульс

События 4пи с 4-мя треками и 6пи с 6-ю треками отбираются практически без фона

Видно, как злополучная наводка портит наше разрешение!

События 3(π⁺π⁻) с 6-ю треками (1)

Гистограмма - моделирование

Из-за наводки на ДК отбор по полному импульсу Ptot < 200 MeV для 2017 г.

КМД-3 Солодов 6пи

События 3(π⁺π⁻) с 6-ю треками (2)

Сканирования 2011, 2012, 2017 г.г.

кмд-з солодов бпи всего найдено 10155 событий 12

События 3(π⁺π⁻) с 5-ю треками (1)

 $\Delta E_5 = \Sigma_1^5 E_{\pi} - 2 E_{beam}$

$$\Delta E_{5+1} = \Sigma_1^5 E_{\pi} + E_{mis} - 2 E_{beam}$$

Сумма событий из 3-х точек по энергии Гистограмма - моделирование

События 3(π⁺π⁻) с 5-ю треками (2)

Форма сигнала берется из моделирования с излучением радиационного фотона, фитировалось 3-мя Гауссами, соотношения фиксировались, кроме положения и сигмы основного Гаусса. Параметры интерполировались между точками по энергии.

 90.89 ± 2.28

20

-300

-200

-100

100

400

-300

-200

-100

100

 77.51 ± 1.66

Фон для событий с 5-ю треками (1)

Форма фона берется из моделирования фоновых процессов. Основной вклад дают e+e- -> 2($\pi^+\pi^-$) $\pi^0\pi^0$, 2($\pi^+\pi^-$) π^0 с конверсией одного фотона Для сравнения с экспериментом изучались события с E_{neutral} > 300 MeV - - энергия в калориметре, не связанная с заряженными треками.

Фон аппроксимировался функцией Ферми умноженой на полином 3-й степени

КМД-3 Солодов 6пи

Фон для событий с 5-ю треками (2)

Проводилось определение числа событий с отбором E_{neutral} < 300 MeV – и без него. параметры Ферми фиксировались (и менялись от энергии)

– параметры полинома свободны

Нет отбора по Е_{neutral}

$E_{neutral} < 300 \text{ MeV}$

Интегрально число событий менялось не более, чем на 3% - оценка систематической ошибки. Статистически в каждой точке разница незаметна.

Сканирования 2011, 2012, 2017 г.

Угловые распределения <mark>е⁺е⁻ -> 3(</mark>π⁺π[−]) событий (1)

Изучение динамики: ДК акцептанс не 100% и эффективность регистрации из МС зависит от углового распределения пионов. Мы воспользовались модификацией генератора БаБар Кардапольцева и написали адронные токи для нескольких моделей (Спасибо 3.Силагадзе и А.Мильштейну), провели моделирование отклика КМД-3 и реконструкцию стандартной процедурой.

Мы тестировали: e+e- -> Phase Space,

$$\begin{split} \rho(1420,1700) f_0(600), & (\rho(1240,1700)\text{->} \texttt{a1}(1260)\pi\text{->}\rho(770)2\pi) \\ \rho(770) 2(\pi + \pi -), \\ \rho(770) f_0(1370,1500), & f_0\text{->} 2(\pi + \pi -), \\ \rho(770) f_2(1270), & f_2\text{->} 2(\pi + \pi -), \end{split}$$

Угловые распределения <mark>е⁺е⁻ -> 3(</mark>π⁺π[−]) событий (2)

У 15-17% событий трек в ДК, но не восстановлен: не зависит от динамики и хорошо моделируется

Телесный угол ДК не 100% и динамика рождения 6π меняет соотношение 6-ти и 5-ти трековых событий.

5/6 отношение – оценка модельной ошибки

Отличие от единицы + ошибка* Scale Factor = 4% - оценка модельной ошибки

Изучение динамикам процесса $e^+e^- -> 3(\pi^+\pi^-)$

Мы показали, что "простая" модель ρ(770)2(π+π-) ИЛИ 180 ρ(770)f₀(1370,1500) хорошо описывает **VГЛОВЫЕ** 100 распределения дает И правильный акцептанс. Но первая хорошо описывает распределения по массам для Ec.m.=1.6 и 2.0 GeV, а 1.8 GeV нужен 400 при резонанс в 4-х пионах. (!?)

в области 1700-1900 MeV !

По данным 2017 г. это никак

Эффективность и рад. поправка

Для расчета сечений бралась сумма N6+N5

Рад. поправка расчитывалась итеррациями: Бралось сечение БаБар, потом подставлялось наше экспериментальное сечение. Сечение процесса е⁺е⁻ -> 3(π⁺π[−])

Систематические ошибки та же - 6%

Похожий анализ процесса **e⁺e⁻ -> 2(***π*⁺*π*[−]**)**

Ebeam = 900 M₃B

Недостающая масса для 4-х треков

Ebeam = 900 M₂B

Ebeam = 700 МэВ

Энергия для 3-х треков + улетевший π

КМД-3 Солодов 6пи

Сечение процесса е⁺е⁻ -> 2(π⁺π[−])

Данные БаБар и предварительные КМД-3

Проблемы с пониманием динамики

Модель а $_1\pi$ не описывает массовые расспределения выше 1.5 ГэВ

Мы не готовы оценить систематику в сечении е⁺е⁻ -> 2(π⁺π⁻)

КМД-3 Солодов 6пи

Сечения вблизи порога NN

Структуры в сечении $e^+e^- \rightarrow 2(\pi^+\pi^-)$ связанной с порогом NN не наблюдается

При какой энергии и на каком энергетическом интервале ?

Быстрое изменение сечения в измерении размывается излучением фотонов и разбросом энергии в пучках.

Разброс энергии в с.ц.м. измеряется по обратному Комптону и на пороге NN составляет $\sigma_{Ec.m.} = 1.3 \text{ M}$ - fixed

Наблюдаемое сечение это свертка "радиационного" сечения с разбросом энергии в с.ц.м.

$$\sigma_{\rm vis}(E_{\rm c.m.}) = \frac{1}{\sqrt{2\pi}\sigma_{E_{\rm c.m.}}} \int dE'_{\rm c.m.}\sigma_{\rm f\gamma}(E'_{\rm c.m.}) \cdot \exp(-\frac{(E_{\rm c.m.} - E'_{\rm c.m.})^2}{2\sigma_{E_{\rm c.m.}}^2})$$

"Радиационное" сечение это свертка Борновского сечения и спектра радиационных фотонов

$$\sigma_{f\gamma}(E_{c.m.}) = \int_0^{E_{c.m.}} dE_{\gamma} \cdot \sigma_{Born}(E_{c.m.} - E_{\gamma}) \cdot F(E_{c.m.}, E_{\gamma}).$$

КМД-3 Солодов 6пи

Очень быстрое изменение сечений!

Для демонстрации мы отфитировали наблюдаемые изменения сечений функцией описывающей экспотенциальный рост (спад) Борновского сечения от порога E_{thr} со значения сечения A до значения B с показателем о_{thr}

Очень быстрое изменение сечений!

	A,nb	B, nb	E _{thr} , MeV	σ_{thr} , MeV	χ2/n.d.f.
р <u>р</u>	0-fixed	0.91±0.01	1875.8±0.5	1.76±0.58	34/25
6π	1.49±0.02	-0.40±0.03	1873.7±0.6	3.1±0.9	17/20
р <u>р</u>	0-fixed	0.914±0.011	1876.54-fixed	0.95±0.25	35/26
6π	1.47±0.03	-0.36±0.03	1876.54-fixed	0.29±0.73	22/21

Заключение

- В 2017 г. мы увеличили статистику при высоких энергиях более, чем в 3 раза! Наши благодарности команде ВЭПП2000 и службам !!!
- Измерены сечения процессов e⁺e⁻ -> pp, 3(π⁺π⁻), 2(π⁺π⁻) в диапазоне 1.5 2.0 ГэВ
- Подтвердилось наличие структуры в сечении e⁺e⁻ -> 3(π⁺π[−]) на пороге рождения pp
- Скачок в сечении 6-ти пионов трудно объяснить интерференцией с резонансом ?
- Сканирование области порога позволило наблюдать "тонкую" структуру сечения
- В процессе e⁺e⁻ -> p<u>p</u> сечение наростает на масштабе 1 МэВ !
- Недостаток статистики и разброс энергии в пучках не позволяет наблюдать "сверх-тонкую" структуру перехода через порог – не видно влияния порога n<u>n</u>
- Не наблюдается наличие структуры в сечении <mark>е+е- -> 2(π+π-)</mark> на пороге рождения N<u>N</u>
 - гипотеза о пропорциональности "скачка" вероятности аннигиляции N<u>N</u> в этот канал предполагает величину "скачка" в 14%/6% раз больше для этого канала
 - происходит какая то сложная динамика, предпочитающая 6 пионов и отсутствие интерференции с континумом!!!

Нам надо больше статистики на пороге

и очень желательно уменьшить энергетический разброс!

Спасибо!