# Рождение $f_1(1285)$ мезона на встречных $e^+e^-$ пучках

### А.С. Руденко<sup>1,2</sup>

<sup>1</sup>Институт ядерной физики им. Г.И. Будкера <sup>2</sup>Новосибирский государственный университет

3 апреля 2020 / ИЯФ, Новосибирск

Доклад основан на работах: A.S. Rudenko, PRD 96 (2017) 076004, A.I. Milstein, A.S. Rudenko, PLB 800 (2020) 135117  $f_1(1285)$  мезон:  $I^G\left(J^{PC}
ight) = 0^+\left(1^{++}
ight)$ 

 $m_f = 1281.9 \pm 0.5 \text{ M}$ əB,  $\Gamma_f = 22.7 \pm 1.1 \text{ M}$ əB [PDG]

Идея исследования рождения C-чётных адронных резонансов на  $e^+e^-$  коллайдерах выдвинута ещё в 1960-х годах [Altarelli *et al.*, Nuovo Cim. А 47 (1967) 113]

С тех пор проведено несколько экспериментов по поиску прямого рождения C-чётных резонансов в  $e^+e^-$  столкновениях,  $e^+e^- \to R$ 

<∃> ∃

Были установлены экспериментальные ограничения на электронные ширины некоторых *С*-чётных мезонов:

$$\Gamma \left( \eta'(958) \to e^+ e^- \right) < 0.002 \ \Im B \ (90\% \ C.L.)$$
  
 
$$\Gamma \left( f_2(1270) \to e^+ e^- \right) < 0.11 \ \Im B \ (90\% \ C.L.)$$
  
 
$$\Gamma \left( a_2(1320) \to e^+ e^- \right) < 0.56 \ \Im B \ (90\% \ C.L.)$$

Объяснение малости этих электронных ширин:

C-чётные мезоны распадаются на  $e^+e^-$  через два виртуальных фотона  $\Rightarrow$  ширины  $\Gamma$  содержат малый множитель  $\alpha^4$ , где  $\alpha\approx 1/137$  – постоянная тонкой структуры

В ИЯФ СО РАН проходит эксперимент по поиску прямого рождения  $f_1(1285)$  мезона в  $e^+e^-$  аннигиляции,  $e^+e^- \rightarrow f_1(1285)$  [Асhasov *et al.*, PLB 800 (2020) 135074]

Поэтому возникла необходимость получить теоретические предсказания для ширины распада  $\Gamma(f_1(1285) \rightarrow e^+e^-)$  и, соответственно, сечения прямого рождения  $f_1(1285)$  мезона в  $e^+e^-$  столкновениях,  $\sigma(e^+e^- \rightarrow f_1(1285))$ 



*P*- и *C*-чётная инвариантная амплитуда:

$$\mathcal{M}(f_1(1285) \to e^+e^-) = F_A \alpha^2 \tilde{e}_\mu \bar{u} \gamma^\mu \gamma^5 v$$

Здесь  $F_A$  – безразмерная константа связи,  $m_e=0$ 

Ширина распада: 
$$\Gamma\left(f_1(1285)
ightarrow e^+e^-
ight)=rac{lpha^4|F_A|^2}{12\pi}m_f$$

Естественно считать  $|F_A| \sim 1 \Rightarrow \Gamma\left(f_1(1285) \rightarrow e^+e^-\right) \sim 0.1$  эВ

Амплитуда перехода  $f_1(1285) 
ightarrow \gamma^* \gamma^*$ 



Амплитуда перехода  $f_1(1285) \to \gamma^* \gamma^*$  параметризуется двумя безразмерными формфакторами  $F_1(q_1^2, q_2^2)$  и  $F_2(q_1^2, q_2^2)$ :

$$\mathcal{M}\left(f_{1}(1285) \to \gamma^{*}\gamma^{*}\right) = \frac{\alpha}{m_{f}^{2}} i\epsilon_{\mu\nu\rho\sigma} \left\{ F_{1}\left(q_{1}^{2}, q_{2}^{2}\right)q_{1}^{\mu}e_{1}^{*\nu}q_{2}^{\rho}e_{2}^{*\sigma} \tilde{e}^{\tau}(q_{1}-q_{2})_{\tau} + F_{2}\left(q_{1}^{2}, q_{2}^{2}\right)q_{1}^{\mu}e_{1}^{*\nu} \tilde{e}^{\rho} \left[q_{2}^{\sigma}e_{2}^{*\lambda}q_{2\lambda} - e_{2}^{*\sigma}q_{2}^{2}\right] + F_{2}\left(q_{2}^{2}, q_{1}^{2}\right)q_{2}^{\mu}e_{2}^{*\nu} \tilde{e}^{\rho} \left[q_{1}^{\sigma}e_{1}^{*\lambda}q_{1\lambda} - e_{1}^{*\sigma}q_{1}^{2}\right] \right\}$$

Структура при формфакторе  $F_1$  соответствует поляризационному состоянию TT (поляризации обоих фотонов поперечны), структура при формфакторе  $F_2$  – комбинации состояний TT и LT. Состояние LL (поляризации обоих фотонов продольны) запрещено законами сохранения 3

$$\mathcal{M}\left(f_{1}(1285) \to \gamma^{*}\gamma^{*}\right) = \frac{\alpha}{m_{f}^{2}} i\epsilon_{\mu\nu\rho\sigma} \left\{ F_{1}\left(q_{1}^{2}, q_{2}^{2}\right)q_{1}^{\mu}e_{1}^{*\nu}q_{2}^{\rho}e_{2}^{*\sigma} \tilde{e}^{\tau}(q_{1}-q_{2})_{\tau} + F_{2}\left(q_{1}^{2}, q_{2}^{2}\right)q_{1}^{\mu}e_{1}^{*\nu} \tilde{e}^{\rho} \left[q_{2}^{\sigma}e_{2}^{*\lambda}q_{2\lambda} - e_{2}^{*\sigma}q_{2}^{2}\right] + F_{2}\left(q_{2}^{2}, q_{1}^{2}\right)q_{2}^{\mu}e_{2}^{*\nu} \tilde{e}^{\rho} \left[q_{1}^{\sigma}e_{1}^{*\lambda}q_{1\lambda} - e_{1}^{*\sigma}q_{1}^{2}\right] \right\}$$

Из-за бозе-симметрии формфактор  $F_1\left(q_1^2,q_2^2
ight)$  должен быть антисимметричным,  $F_1\left(q_1^2,q_2^2
ight)=-F_1\left(q_2^2,q_1^2
ight)$ 

Распад  $f_1(1285) \rightarrow \gamma \gamma$  запрещён по теореме Ландау-Янга  $\Rightarrow$  амплитуда обращается в нуль, когда оба фотона на массовой поверхности. Первое слагаемое обращается в нуль, т.к.  $F_1(0,0) = 0$ , остальные слагаемые равны нулю, т.к.  $q^2 = 0$  и  $e^{\lambda}q_{\lambda} = 0$  для реальных фотонов

Амплитуда распада  $f_1(1285) \to e^+e^-$ , которая соответствует однопетлевой диаграмме:

$$\begin{split} \mathcal{M}(f_{1}(1285) \rightarrow e^{+}e^{-}) &= \frac{4\pi i \alpha^{2}}{m_{f}^{2}} \Biggl\{ -4\,\tilde{e}^{\,\mu}P^{\nu}\bar{u}\gamma^{\lambda}\gamma^{5}v \int \frac{d^{4}k}{(2\pi)^{4}} \frac{k_{\mu}k_{\nu}k_{\lambda}}{k^{2}q_{1}^{2}q_{2}^{2}} F_{1}\left(q_{1}^{2},q_{2}^{2}\right) \\ &- 2\,\tilde{e}^{\,\mu}\bar{u}\gamma^{\nu}\gamma^{5}v \int \frac{d^{4}k}{(2\pi)^{4}} \frac{k_{\mu}k_{\nu}}{k^{2}q_{1}^{2}q_{2}^{2}} \Biggl[ F_{2}\left(q_{1}^{2},q_{2}^{2}\right)q_{2}^{2} + F_{2}\left(q_{2}^{2},q_{1}^{2}\right)q_{1}^{2} \Biggr] \\ &+ \tilde{e}_{\mu}\bar{u}\gamma^{\mu}\gamma^{5}v \int \frac{d^{4}k}{(2\pi)^{4}} \frac{1}{k^{2}q_{1}^{2}q_{2}^{2}} \Biggl[ F_{2}\left(q_{1}^{2},q_{2}^{2}\right)\left\{k^{2}(p_{1}p_{2}+p_{1}k-p_{2}k)-2q_{2}^{2}(p_{1}k)+2q_{2}^{2}k^{2}\right\} \\ &+ F_{2}\left(q_{2}^{2},q_{1}^{2}\right)\left\{k^{2}(p_{1}p_{2}+p_{1}k-p_{2}k)+2q_{1}^{2}(p_{2}k)+2q_{1}^{2}k^{2}\right\} \Biggr] \Biggr\}, \end{split}$$

где  $P = p_1 + p_2$ ,  $q_1 = p_1 - k$  и  $q_2 = p_2 + k$ 

▲臣▶ ▲臣▶ 臣 めへで

Явный вид формфакторов  $F_1(q_1^2, q_2^2)$  и  $F_2(q_1^2, q_2^2)$  неизвестен  $\Rightarrow$  нужно найти параметризацию, которая будет находиться в согласии с экспериментальными данными

Для нахождения такой параметризации действуем в духе модели векторной доминантности и предполагаем, что главный вклад в амплитуду  $\mathcal{M}(f_1(1285) \rightarrow e^+e^-)$  даёт промежуточное состояние, когда оба виртуальных фотона взаимодействуют с  $f_1(1285)$  мезоном посредством промежуточных  $\rho^0$  мезонов



Аргументы в пользу такой модели:

- Экспериментальные данные [Barberis et al., PLB 471 (2000) 440] показывают, что один из основных распадов  $f_1(1285)$  мезона, распад  $f_1(1285) \rightarrow 4\pi$ , относительная вероятность которого составляет около 33%, происходит главным образом через промежуточное  $\rho\rho$  состояние
- Ещё одним свидетельством в пользу сильного  $f_1(1285)\rho^0\rho^0$  взаимодействия является довольно большая, около 5.5%, относительная вероятность радиационного распада  $f_1(1285) \rightarrow \rho^0 \gamma$

#### Barberis et al., PLB 471 (2000) 440



А.С.Руденко Рождение  $f_1$  мезона на встречных  $e^+e^-$  пучках

Ограничения на параметры модели можно получить из экспериментальных данных о распаде  $f_1(1285) o 
ho^0 \gamma$ 

$$\mathcal{M}\left(f_1(1285) \to \rho^0 \gamma\right) = \frac{\alpha}{m_f^2} i\epsilon_{\mu\nu\rho\sigma} \left\{ g_1 p^\mu \epsilon^{*\nu} q^\rho e^{*\sigma} \tilde{e}^{\,\tau} (p-q)_\tau - m_\rho^2 g_2 \tilde{e}^{\,\mu} \epsilon^{*\nu} q^\rho e^{*\sigma} \right\}$$

Здесь  $g_1$  и  $g_2$  – комплексные константы связи

Структура при константе  $g_1$  соответствует поляризационному состоянию T, а структура при константе  $g_2$  – комбинации поляризационных состояний T и L

$$T$$
 — поляризация  $ho^0$  мезона поперечна  
 $L$  — поляризация  $ho^0$  мезона продольна

В итоге, мы записываем формфакторы  $F_1$  и  $F_2$  в следующем виде:

$$F_{1}\left(q_{1}^{2}, q_{2}^{2}\right) = \frac{g_{1}g_{\rho\gamma}\left(m_{\rho}^{2} - im_{\rho}\Gamma_{\rho}\right)\left(q_{2}^{2} - q_{1}^{2}\right)}{\left(q_{1}^{2} - m_{\rho}^{2} + im_{\rho}\Gamma_{\rho}\right)\left(q_{2}^{2} - m_{\rho}^{2} + im_{\rho}\Gamma_{\rho}\right)}$$
$$F_{2}\left(q_{1}^{2}, q_{2}^{2}\right) = \frac{g_{2}g_{\rho\gamma}\left(m_{\rho}^{2} - im_{\rho}\Gamma_{\rho}\right)\left(-m_{\rho}^{2}\right)}{\left(q_{1}^{2} - m_{\rho}^{2} + im_{\rho}\Gamma_{\rho}\right)\left(q_{2}^{2} - m_{\rho}^{2} + im_{\rho}\Gamma_{\rho}\right)}$$

 $m_
ho=775.26~{
m M}$ эВ и  $\Gamma_
ho=147.8~{
m M}$ эВ – масса и ширина  $ho^0$  мезона,  $g_{
ho\gamma}$  – безразмерная константа связи перехода  $ho^{0*} o\gamma^*$ ,

$$\mathcal{M}\left(\rho^{0*} \to \gamma^{*}\right) = g_{\rho\gamma}\left(q^{2}g_{\mu\nu} - q_{\mu}q_{\nu}\right)\epsilon^{\mu}e^{*\nu} \Rightarrow g_{\rho\gamma} = \sqrt{\frac{3\Gamma\left(\rho^{0} \to e^{+}e^{-}\right)}{\alpha m_{\rho}}} \approx 0.06$$

Обсудим теперь, какие ограничения на константы  $g_1$  и  $g_2$  следуют из экспериментальных данных

Ширина распада  $f_1(1285) \rightarrow \rho^0 \gamma$ :

$$\Gamma\left(f_1(1285) \to \rho^0 \gamma\right) = \frac{\alpha^2}{96\pi} m_f (1-\xi)^3 \\ \times \left[(1-\xi)^2 |g_1|^2 + \xi(1+\xi) |g_2|^2 + 2\xi(1-\xi) |g_1| |g_2| \cos \delta\right],$$

где  $\xi=m_
ho^2/m_f^2pprox 0.37$ 

Поскольку в амплитуде структуры при константах  $g_1$  и  $g_2$  не соответствуют различным поляризационным состояниям  $\rho^0$  мезона, интерференционный член в квадрате амплитуды не исчезает после суммирования по поляризациям. В результате ширина распада  $f_1(1285) \rightarrow \rho^0 \gamma$  зависит от относительной фазы  $\delta = \phi_1 - \phi_2$  комплексных констант  $g_1$  и  $g_2$ 

Экспериментальные ограничения на константы распада  $f_1(1285) o 
ho^0 \gamma$ 

Помимо  $\Gamma(f_1(1285) \to \rho^0 \gamma)$  ещё одно соотношение между  $|g_1|$ ,  $|g_2|$  и  $\delta$  можно получить из данных эксперимента коллаборации VES [Amelin *et al.*, Z. Phys. C 66 (1995) 71], в котором измерены угловые распределения в распаде  $f_1(1285) \to \rho^0 \gamma \to \pi^+ \pi^- \gamma$ :

$$\left|\mathcal{M}\left(f_1(1285) \to \rho^0 \gamma \to \pi^+ \pi^- \gamma\right)\right|^2 \propto \rho_{LL} \cos^2 \theta + \rho_{TT} \sin^2 \theta,$$

где  $\rho_{LL}$  и  $\rho_{TT}$  – элементы матрицы плотности, отвечающие продольно и поперечно поляризованным  $\rho^0$  мезонам, соответственно;  $\theta$  – угол между импульсами  $\pi^+$  мезона и фотона в системе покоя  $\rho^0$  мезона

Экспериментальные ограничения на константы распада  $f_1(1285) o 
ho^0 \gamma$ 



Распределение событий по  $\cos \theta$  явно похоже на  $\cos^2 \theta \Rightarrow \rho_{LL} \gg \rho_{TT}$ Экспериментальное значение отношения

$$r = \frac{\rho_{LL}}{\rho_{TT}} = 3.9 \pm 0.9 \pm 1.0$$

можно использовать для получения ограничений на константы  $g_1$  и  $g_2$ В нашей модели:

$$r = \frac{2\xi |g_2|^2}{(1-\xi)^2 |g_1|^2 + \xi^2 |g_2|^2 + 2\xi(1-\xi)|g_1||g_2|\cos\delta}$$

Из экспериментальных данных  $\mathcal{B}(f_1(1285) \to \rho^0 \gamma) = (5.5 \pm 1.3)\%$  и  $r = 3.9 \pm 0.9 \pm 1.0$  в нашей модели можно найти абсолютную величину константы  $g_2$ :

 $\alpha |g_2| = 1.49 \pm 0.20$ 

К сожалению, из экспериментальных данных о распаде  $f_1(1285) \rightarrow \rho^0 \gamma$  невозможно получить точное значение  $|g_1|$ . Можно только выразить  $|g_1|$  через  $\cos \delta \Rightarrow$  в нашей модели остаётся только один свободный параметр — фаза  $\delta$ 

Учитывая, что  $-1 \le \cos \delta \le 1$ , получаем

 $0.16 \le \alpha |g_1| \le 1.87$ 

Экспериментальные данные [Barberis *et al.*, PLB 471 (2000) 440] указывают на то, что основной вклад в распад  $f_1(1285) \rightarrow \pi^+\pi^-\pi^+\pi^-$  даёт промежуточное состояние с двумя виртуальными  $\rho^0$  мезонами



Сравним результаты наших вычислений с экспериментальным значением,  $\mathcal{B}(f_1(1285) \rightarrow \pi^+\pi^-\pi^+\pi^-) = (11.0^{+0.7}_{-0.6}) \%$ 

Распад  $f_1(1285) \to \pi^+\pi^-\pi^+\pi^-$ 



Сплошная линия – относительная вероятность  $\mathcal{B}(f_1(1285) \to \pi^+\pi^-\pi^+\pi^-)$ , вычисленная для средних значений всех величин. Штриховая и пунктирная линии – отклонение  $1\sigma$ . Горизонтальная полоса – экспериментальное значение

Предсказания нашей модели совпадают со средним экспериментальным значением 11.0% при одном из двух возможных значений фазы:

 $\delta pprox 0.67\,\pi$  либо  $\delta pprox 1.25\,\pi$ 

Обратимся теперь к вычислению  $\Gamma(f_1(1285) 
ightarrow e^+e^-)$ 

Для константы  $F_A$  в нашей модели получаем следующий результат:

$$F_A = -\alpha g_1 \left( 0.22 + 0.25i \right) - \alpha g_2 \left( 0.75 + 0.57i \right)$$

Удобно выделить зависимость величины  $|F_A|^2$  от фазы  $\delta$ :

$$|F_A|^2 = \left| e^{i\delta} \cdot \alpha |g_1| \cdot (0.22 + 0.25i) + \alpha |g_2| \cdot (0.75 + 0.57i) \right|^2$$

В итоге получаем

$$|F_A| pprox \left\{ egin{array}{cccc} 1.17 & \mbox{при } \delta pprox 0.67 \, \pi, \ 1.20 & \mbox{при } \delta pprox 1.25 \, \pi \end{array} 
ight.$$

3 ∃ → ∃

Наши предсказания для ширины распада  $f_1(1285) \rightarrow e^+e^-$ :

$$\Gamma(f_1(1285)
ightarrow e^+e^-)pprox egin{cases} 0.13 \ {
m sB} & \ {
m при} \ \deltapprox 0.67 \ \pi, \ 0.14 \ {
m sB} & \ {
m прu} \ \deltapprox 1.25 \ \pi \end{cases}$$

Наивная оценка  $\Gamma(f_1(1285) \to e^+e^-) \sim 0.1 \; {\rm sB}$  хорошо согласуется с этими значениями

Относительная вероятность распада  $f_1(1285) \to e^+e^-$ :

$${\cal B}(f_1(1285) o e^+e^-)pprox egin{cases} 5.5\cdot 10^{-9} & ext{при }\deltapprox 0.67\,\pi,\ 5.8\cdot 10^{-9} & ext{при }\deltapprox 1.25\,\pi \end{cases}$$

Значение, полученное в эксперименте ИЯФ [PLB 800 (2020) 135074]:

$${\cal B}(f_1(1285) o e^+e^-) = \left(5.1^{+3.7}_{-2.7}
ight) \cdot 10^{-9}$$

▲ 御 ▶ ▲ 国 ▶ ▲ 国 ▶ → 의 ● → ○ ○ ○

Полное сечение прямого рождения  $f_1(1285)$  мезона в  $e^+e^-$ аннигиляции:

$$\sigma(e^+e^- \to f_1(1285)) = \frac{12\pi}{m_f^2} \mathcal{B}(f_1(1285) \to e^+e^-)$$

Наши теоретические предсказания:

$$\sigma(e^+e^- o f_1(1285)) pprox egin{cases} 49 \ {
m nfo} & {
m при} \ \delta pprox 0.67 \ \pi, \ 52 \ {
m nfo} & {
m npu} \ \delta pprox 1.25 \ \pi \end{cases}$$

Значение, полученное в эксперименте ИЯФ [PLB 800 (2020) 135074]:

$$\sigma(e^+e^- o f_1(1285)) = 45^{+33}_{-24}$$
 пб

Поскольку основным каналом распада  $f_1(1285)$  мезона является распад  $f_1(1285) \rightarrow \eta \pi \pi$ , относительная вероятность которого составляет около 52%, для экспериментального изучения прямого рождения  $f_1(1285)$  мезона в  $e^+e^-$  столкновениях можно использовать процесс аннигиляции  $e^+e^- \rightarrow f_1(1285) \rightarrow \eta \pi \pi$ 

Распад  $f_1(1285) \rightarrow \eta \pi \pi$  происходит главным образом через промежуточные скалярные мезоны  $a_0(980)$ , которые так же, как и  $\pi$ мезоны, образуют изотриплет. Относительная вероятность такого канала распада составляет приблизительно 70%. Под конечным состоянием  $\eta \pi \pi$  здесь понимается как состояние  $\eta \pi^+ \pi^-$ , в котором оба  $\pi$  мезона являются заряженными, так и состояние  $\eta \pi^0 \pi^0$ , в котором оба  $\pi$  мезона являются нейтральными

御 とくきとくきとうき

Процесс  $e^+e^- \to f_1(1285) \to a_0^{\pm}(980)\pi^{\mp} \to \eta\pi^+\pi^-$ 



Наши теоретические предсказания:

$$\sigma\left(e^+e^-
ightarrow f_1(1285)
ightarrow a_0^\pm(980)\pi^\mp
ightarrow\eta\pi^+\pi^-
ight)pprox12$$
пб,

как при значении фазы  $\delta pprox 0.67\,\pi$ , так и при значении  $\delta pprox 1.25\,\pi$ 

Процесс  $e^+e^- \to f_1(1285) \to a_0^0(980)\pi^0 \to \eta\pi^0\pi^0$ 



Наши теоретические предсказания:

 $\sigma \left( e^+ e^- o f_1(1285) o a^0_0(980) \pi^0 o \eta \pi^0 \pi^0 
ight) pprox 6$  пб,

как при значении фазы  $\delta pprox 0.67\,\pi$ , так и при значении  $\delta pprox 1.25\,\pi$ 

Несмотря на то, что сечение  $\sigma \left( e^+ e^- \rightarrow f_1(1285) \rightarrow \eta \pi^0 \pi^0 \right)$  в два раза меньше, чем сечение  $\sigma (e^+e^- \rightarrow f_1(1285) \rightarrow \eta \pi^+\pi^-),$ процесс  $e^+e^- \to f_1(1285) \to \eta \pi^0 \pi^0$  является более удобным для изучения прямого рождения  $f_1(1285)$  мезона в  $e^+e^$ столкновениях, чем процесс  $e^+e^- \to f_1(1285) \to \eta \pi^+\pi^-$ . Дело в том, что реакция аннигиляции  $e^+e^- o \eta\pi^0\pi^0$  протекает только через С-чётное двухфотонное промежуточное состояние. Таким образом, для процесса  $e^+e^- \rightarrow f_1(1285) \rightarrow \eta \pi^0 \pi^0$  отсутствует фон от *C*-нечётной однофотонной аннигиляции, и соответствующее сечение можно измерить непосредственно.

Напротив, реакция аннигиляции  $e^+e^- \rightarrow \eta \pi^+\pi^-$  протекает главным образом через C-нечётное однофотонное промежуточное состояние. Сечение этой реакции было измерено при полной энергии в системе центра масс в диапазоне от 1.22 до 2 ГэВ [Aulchenko *et al.*, PRD 91 (2015) 052013]. Экспериментальные данные хорошо описываются моделью векторной доминантности с промежуточными векторными мезонами  $\rho = \rho(770)$  и  $\rho' = \rho(1450)$ . При этом анализ спектра инвариантной массы  $\pi^+\pi^-$  мезонов показывает, что в нём доминирует промежуточное состояние  $\rho(770)$ 





FIG. 7 (color online). The Born cross section for  $e^+e^- \rightarrow \eta \pi^+\pi^-$  measured in this (SND@VEPP2000) and previous experiments (*BABAR* [4] and SND@VEPP2M [5]). The solid curve is the result of the VMD fit with the  $\rho(770)$ ,  $\rho(1450)$  and  $\rho(1700)$  resonances. The dashed curve is the same fit without the  $\rho(1700)$  contribution.

При энергии  $\sqrt{s} = 1278$  МэВ, приблизительно равной массе  $f_1(1285)$  мезона, экспериментальное значение сечения  $\sigma (e^+e^- \to \eta \pi^+\pi^-)$  равно  $490 \pm 130$  (стат.) пб

Таким образом, измерение сечения  $\sigma \ (e^+e^- o f_1(1285) o \eta \pi^+\pi^-)$  представляет собой очень сложную задачу, так как оно подавлено дополнительным малым множителем  $\alpha^2$  по сравнению с сечением однофотонного процесса  $e^+e^- o 
ho o \eta \pi^+\pi^-$ 

Одной из возможностей преодолеть эту трудность является исследование процесса  $e^+e^- \to f_1(1285) \to \eta \pi^+\pi^-$ посредством C-нечётных эффектов, которые возникают из-за интерференции C-чётной двухфотонной и C-нечётной однофотонной амплитуд

С-нечётная однофотонная амплитуда:

$$\mathcal{M}_{1}(e^{+}e^{-} \to \eta \pi^{+}\pi^{-}) = \frac{if_{\rho\pi\pi}}{q^{2} - m_{\rho}^{2} + i\sqrt{q^{2}}\Gamma_{\rho}(q^{2})} \\ \times \left(\frac{f_{\rho e e}f_{\rho\rho\eta}}{s - m_{\rho}^{2} + i\sqrt{s}\Gamma_{\rho}(s)} + \frac{f_{\rho' e e}f_{\rho'\rho\eta}}{s - m_{\rho'}^{2} + i\sqrt{s}\Gamma_{\rho'}(s)}\right)\epsilon_{\lambda\nu\sigma\tau}p_{-}^{\lambda}p_{+}^{\nu}k^{\sigma}\bar{v}\gamma^{\tau}u$$

С-чётная двухфотонная амплитуда:

$$\mathcal{M}_{2}(e^{+}e^{-} \to \eta \pi^{+}\pi^{-}) = \frac{-iF_{A}\alpha^{2}g_{f\pi a}g_{a\pi\eta}m_{a}}{s - m_{f}^{2} + im_{f}\Gamma_{f}} \\ \times \bar{v}\left(\frac{\hat{p}_{+}}{(k + p_{-})^{2} - m_{a}^{2} + im_{a}\Gamma_{a}} + \frac{\hat{p}_{-}}{(k + p_{+})^{2} - m_{a}^{2} + im_{a}\Gamma_{a}}\right)\gamma^{5}u$$

 Определим зарядовую асимметрию в процессе  $e^+e^- o \eta \pi^+\pi^-$  как

$$A = \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-} = \frac{\sigma^+_{int}}{\sigma^+_1 + \sigma^+_2}$$

где  $\sigma^+ = \sigma_1^+ + \sigma_2^+ + \sigma_{int}^+$  – сечение реакции  $e^+e^- \to \eta \pi^+\pi^-$ , проинтегрированное по фазовому объёму в области  $\{\cos \theta_\eta > 0, \cos \theta_\pi > 0\}$ , аналогично  $\sigma^- = \sigma_1^- + \sigma_2^- + \sigma_{int}^-$  – сечение реакции  $e^+e^- \to \eta \pi^+\pi^-$ , проинтегрированное по фазовому объёму в области  $\{\cos \theta_\eta > 0, \cos \theta_\pi < 0\}$ 

Здесь  $\theta_{\eta}$  – угол между импульсами  $\eta$  мезона и позитрона в системе центра масс начальных электрона и позитрона,  $\theta_{\pi}$  – угол между импульсами  $\pi^+$  мезона и  $\eta$  мезона в системе центра масс  $\pi^+\pi^-$  мезонов

御 と くき と くき と しきし

Зарядовая асимметрия в процессе  $e^+e^- o \eta \pi^+\pi^-$ 

Помимо фазы  $\delta$  интерференционный член  $\sigma_{int}^+$  содержит ещё один свободный параметр – относительную фазу  $\phi$ , возникающую из-за того, что произведение соответствующих констант связи является, вообще говоря, комплексным числом:



$$F_A g_{f\pi a} g_{a\pi\eta} f^*_{\rho\pi\pi} = |F_A g_{f\pi a} g_{a\pi\eta} f_{\rho\pi\pi}| e^{i\phi}$$

А.С. Руденко Рождение  $f_1$  мезона на встречных  $e^+e^-$  пучках

Однако, оказалось, что предсказания этой модели для процесса  $e^+e^- 
ightarrow e^+e^-f_1(1285)$  недостаточно хорошо согласуются с экспериментальными данными



Коллаборация L3 [Achard *et al.*, PLB 526 (2002) 269] исследовала зависимость сечения рождения  $f_1(1285)$  мезона в столкновении реального и виртуального фотонов,  $\sigma(\gamma\gamma^* \to f_1(1285))$ , от виртуальности второго фотона  $Q^2 = -q_2^2 > 0$ 

$$\sigma(\gamma\gamma^* \to f_1(1285)) = \frac{48\pi \widetilde{\Gamma}_{\gamma\gamma}\Gamma_f}{\left(s - m_f^2\right)^2 + m_f^2\Gamma_f^2} \left(1 + \frac{Q^2}{m_f^2}\right) \frac{Q^2}{m_f^2} \left(1 + \frac{Q^2}{2m_f^2}\right) F_0\left(Q^2\right)$$

Здесь  $F_0\left(Q^2
ight)$  – эффективный формфактор

$$F_0\left(Q^2\right) = rac{1}{\left(1 + Q^2/\Lambda_0^2
ight)^4}$$

где  $\Lambda_0$  – свободный параметр, экспериментальное значение которого было получено в результате фитирования:  $\Lambda_0 = 1.04 \pm 0.06 \pm 0.05$  ГэВ Наша модель в приближении  $\Gamma_{
ho} \ll m_{
ho}$ :

$$F_0\left(Q^2\right) = rac{1}{\left(1 + Q^2/m_
ho^2
ight)^2}$$

Коллаборацией L3 было проведено исследование такого формфактора и показано, что он не согласуется с экспериментальными данными

Для описания  $e^+e^- 
ightarrow e^+e^- f_1(1285)$  нужна другая модель!

< = > = • • • •

Формфакторы для амплитуды перехода  $f_1(1285) o \gamma^* \gamma^*$ :

$$F_1\left(q_1^2, q_2^2\right) = \frac{g_1 m_f^3(q_2^2 - q_1^2)}{q(q_1^2 - \mu_\rho^2)(q_2^2 - \mu_\rho^2)},$$
  
$$F_2\left(q_1^2, q_2^2\right) = \frac{g_2 m_f^5}{q(q_1^2 - \mu_\rho^2)(q_2^2 - \mu_\rho^2)},$$

где  $g_1$  и  $g_2$  – константы,  $\mu_{\rho}^2 = m_{\rho}^2 - i m_{\rho} \Gamma_{\rho}$ . Величина q в знаменателях выглядит следующим образом:

$$q=rac{1}{m_f}\sqrt{
u^2-q_1^2q_2^2}\,,$$
 где  $u=q_1q_2=rac{1}{2}\left(m_f^2-q_1^2-q_2^2
ight),$ 

и в системе покоя  $f_1(1285)$  мезона равна абсолютному значению импульса фотонов,  $q = |q_1| = |q_2|$ 

▲ 문 ▶ ▲ 문 ▶ \_ 문 ...

Новая модель, формфакторы переходов  $f_1(1285) o 
ho^{0*} 
ho^{0*} \gamma^*$ 

Формфакторы для амплитуды перехода  $f_1(1285) o 
ho^{0*} 
ho^{0*}$ :

$$F_1^{\rho\rho}\left(q_1^2, q_2^2\right) = \frac{\tilde{g}_1 m_f^3 \left(q_2^2 - q_1^2\right)}{q}, \quad F_2^{\rho\rho}\left(q_1^2, q_2^2\right) = \frac{\tilde{g}_2 m_f^5}{q},$$

где  $g_1=(ef_
ho)^2 ilde g_1$  и  $g_2=(ef_
ho)^2 ilde g_2$ . Здесь  $ef_
ho$  – константа перехода  $ho^0$  мезона в фотон:

$$ef_{\rho} = \sqrt{\frac{3\Gamma_{\rho \to ee}m_{\rho}^3}{4\pi\alpha}}$$

Формфакторы для амплитуды перехода  $f_1(1285) o 
ho^{0*} \gamma^*$ :

$$F_1^{\rho\gamma}\left(q_1^2, q_2^2\right) = \frac{(ef_{\rho})\tilde{g}_1 m_f^3(q_2^2 - q_1^2)}{\mathbf{q}(q_2^2 - \mu_{\rho}^2)} \,, \quad F_2^{\rho\gamma}\left(q_1^2, q_2^2\right) = \frac{(ef_{\rho})\tilde{g}_2 m_f^5}{\mathbf{q}(q_2^2 - \mu_{\rho}^2)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シの()~

Из экспериментальных данных о ширине распада  $f_1(1285) o 
ho^0 \gamma$  и данных коллаборации VES о распаде  $f_1(1285) o 
ho^0 \gamma o \pi^+ \pi^- \gamma$  можно найти

$$|g_2| = (2.9 \pm 0.4) \cdot 10^{-4} \,,$$

$$\left|\frac{g_1}{g_2}\right| = \frac{\cos\phi + \sqrt{b/a^2 - \sin^2\phi}}{1 - a^2},$$

где  $\phi$  — относительная фаза констант  $g_1$  и  $g_2$ ,  $g_1/g_2 = |g_1/g_2| e^{i\phi}$ ,  $a = m_{
ho}/m_f pprox 0.6$ ,

$$b = \left| \frac{(1-a^2)F_1^{\rho\gamma}(m_{\rho}^2, 0) + a^2 F_2^{\rho\gamma}(m_{\rho}^2, 0)}{a F_2^{\rho\gamma}(m_{\rho}^2, 0)} \right|^2 = \frac{2}{r} = 0.51 \pm 0.18$$

Сечение  $\sigma(\gamma\gamma^* o f_1(1285))$  содержит формфактор  $F_0\left(Q^2
ight)$ , который в новой модели равен

$$F_0^{th}\left(Q^2
ight) = rac{2+x|1-(1+x)g_1/g_2|^2}{(2+x)(1+x)^2(1+x/a^2)^2},$$
 где  $x = rac{Q^2}{m_f^2}$ 

 $F_0\left(Q^2
ight)$  – сплошная линия,  $F_0^{th}\left(Q^2
ight)$  при  $\phi=\pi$  – штриховая линия,  $F_0^{th}\left(Q^2
ight)$  при  $\phi=0$  – пунктирная линия. Видно, что  $\phipprox\pi$ 

≣▶ ≣ ∕∫∢⊘

#### Achard et al., PLB 526 (2002) 269



Fig. 5. Experimental differential cross section  $d\sigma/dQ^2$  compared to calculations of the GaGaRes Monte Carlo (dashed line) and to the calculations of Cahn [11] (dotted line). The full line is a fit of the data with the GaGaRes model, with A and  $\tilde{T}_{YY}$  as free parameters.

Дифференциальное сечение  $d\sigma \left( e^+e^- 
ightarrow e^+e^- f_1(1285) \right)/dQ^2$ 



Дифференциальное сечение  $d\sigma \left( e^+e^- 
ightarrow e^+e^-f_1(1285) 
ight)/dQ^2$ 

Экспериментальные данные – точки и сплошная линия, наша модель с формфактором  $F_0^{th}(Q^2)$  при  $\phi = \pi$  – штриховая линия,  $F_0^{th}(Q^2)$  при  $\phi = 0$  – пунктирная линия

Наши теоретические предсказания в новой модели для сечения процесса  $e^+e^- \to f_1(1285)$ :

$$\sigma(e^+e^- o f_1(1285)) pprox egin{cases} (6\pm2) ext{ пб} & ext{при } \phi=0, \ (31\pm16) ext{ пб} & ext{при } \phi=\pi \end{cases}$$

Значение, полученное в эксперименте ИЯФ [PLB 800 (2020) 135074]:

$$\sigma(e^+e^- o f_1(1285)) = 45^{+33}_{-24}$$
 пб

문⊁ ★ 문⊁ --

3

- Предложена параметризация электромагнитных формфакторов  $f_1(1285)$  мезона [A.S. Rudenko, PRD 96 (2017) 076004], которая хорошо согласуется с экспериментальными данными о распаде  $f_1(1285) \rightarrow \pi^+\pi^-\pi^+\pi^-$  и о процессе прямого рождения  $f_1(1285)$  мезона в  $e^+e^-$  столкновениях,  $e^+e^- \rightarrow f_1(1285)$ . С использованием этой параметризации получены теоретические предсказания для электронной ширины распада  $f_1(1285)$  мезона и, соответственно, полного сечения прямого рождения  $f_1(1285) \approx 50$  пб. Это значение хорошо согласуется с недавно полученным экспериментальным результатом,  $\sigma(e^+e^- \rightarrow f_1(1285)) \approx 50$  пб. Это значение хорошо согласуется с недавно полученным экспериментальным результатом,  $\sigma(e^+e^- \rightarrow f_1(1285)) = 45^{+33}_{-24}$  пб [Achasov *et al.*, PLB 800 (2020) 135074]
- С использованием предложенной параметризации формфакторов  $f_1(1285)$  мезона вычислена зарядовая асимметрия в процессе  $e^+e^- \to \eta \pi^+\pi^-$ , возникающая из-за интерференции между C-чётной двухфотонной амплитудой  $e^+e^- \to f_1(1285) \to \eta \pi^+\pi^-$  и C-нечётной однофотонной амплитудой  $e^+e^- \to \rho \to \eta \pi^+\pi^-$ . Согласно нашим вычислениям величина этой асимметрии может быть довольно большой, порядка 10%

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Поскольку предложенная параметризация формфакторов f<sub>1</sub>(1285) мезона недостаточно хорошо согласуется с экспериментальными данными о процессе e<sup>+</sup>e<sup>-</sup> → e<sup>+</sup>e<sup>-</sup>f<sub>1</sub>(1285), найдена другая параметризация формфакторов f<sub>1</sub>(1285) мезона [A.I. Milstein, A.S. Rudenko, PLB 800 (2020) 135117], которая находится в согласии со всеми имеющимися экспериментальными результатами, в том числе и для процесса e<sup>+</sup>e<sup>-</sup> → e<sup>+</sup>e<sup>-</sup>f<sub>1</sub>(1285)

## Спасибо за внимание!

А.С. Руденко Рождение  $f_1$  мезона на встречных  $e^+e^-$  пучках

< 注 → < 注 → □ 注