

Изучение процесса е⁺е⁻ →ηηγ в области энергии √s =1.17-2.00 ГэВ с детектором СНД

Л.В.Кардапольцев

ияф со ран 15 октября 2021

- Процесс е⁺е⁻ → ŋŋү изучается в диапазоне энергии в с.ц.м. от 1.17 до 2.00 ГэВ
- В этом диапазоне энергии сечение е⁺е⁻ → ηηγ измерено впервые
- Процесс изучался в пятифотонном конечном состоянии

- Доминирующий вклад в сечение дает процесс е⁺е⁻ → фη с распадом ф→ηγ
- Сечение е⁺е⁻ → фŋ измерялось в канале ф→К⁺К⁻ на СНД, КМД-3, BaBar
- Наибольший интерес представляет поиск радиационных процессов, в которых фотон излучается возбужденным векторным мезоном, например, e⁺e⁻ → f₀(1500)γ, f'₂(1525)γ

Детектор СНД

20 40 60 80 100 cm

1 – вакуумная камера, 2 – трековая система,

- 3 аэрогелевые черенковские счетчики,
- 4 кристаллы Nal(Tl), 5 фототриоды,
- 6 железный поглотитель, 7–9 мюонный детектор, 10 фокусирующие соленоиды ВЭПП-2000.

Детектор СНД набирал данные на ВЭПП-2000 в 2010-2013 г и с 2016 по настоящее время

Главная физическая задача СНД это изучение всех возможных процессов е⁺е⁻ аннигиляции в адроны ниже 2 ГэВ.

- Полное адронное сечение, которое вычисляется как сумма эксклюзивных сечений
- ✓ Изучение динамики эксклюзивных процессов
- Изучение свойств возбужденных векторных мезонов семейства ρ, ω, ф

- Для анализа были использованы данные набранные в 2010 2020 гг.
- Интегральная светимость составила 201 пб⁻¹

- Для измерения светимости был использован процесс е⁺е⁻ → үү
- Этот процесс имеет общие систематические ошибки с изучаемым и они сокращаются при нормировке
 учет наложений пучкового фона
 моделирование триггера
- Систематическая погрешность измерения светимости 2%
- Данные объединены в 6 интервалов по энергии

Фон

- Основные фоновые процессы: $e^+e^- \rightarrow \omega \pi^0 \rightarrow \pi^0 \pi^0 \gamma$, $e^+e^- \rightarrow \omega \eta \rightarrow \eta \pi^0 \gamma$
- Также заметный вклад дают процессы e⁺e⁻ → ωπ⁰π⁰, e⁺e⁻ → ωηπ⁰ и процессы КЭД e⁺e⁻ → 4γ,5γ

Условия отбора

- Ровно 5 фотонов, нет тректов
- Кинематическая реконструкция

 $e^+e^- \rightarrow \eta \eta \gamma$, $e^+e^- \rightarrow \eta \pi^0 \gamma$, $e^+e^- \rightarrow \pi^0 \pi^0 \gamma$, $e^+e^- \rightarrow 5\gamma$

■
$$\chi^2_{\eta\eta\gamma}$$
 - $\chi^2_{5\gamma}$ < 60, $\chi^2_{5\gamma}$ < 30, $\chi^2_{\pi\pi\gamma}$ - $\chi^2_{5\gamma}$ > 100

Л.В.Кардапольцев ИЯФ СО РАН 2021

- Для определения числа событий процесса e⁺e⁻→ηηγ проводилась подгонка распределения по χ²_{ηηγ} - χ²_{5γ} суммой распределений для сигнала и фона
- Распределение для сигнала получено как сумма распределений для е⁺е⁻ → фη, ρη,ωη
- Выше порога ф
 порога ф
 пече сигнал от событий е⁺е⁻→ ф
 п
- Ожидаемый вклад от
 e⁺e⁻ → ρη,ωη для
- √s = 1.17-1.57 ГэВ ≈ 0.7 события
- Ожидаемое количество событий фона хорошо согласуется с найдемым из подгонки

- Для изучения неточности, с которой моделируется распределение по χ²_{ηηγ} χ²_{5γ}, были использованы события e⁺e⁻ → π⁰ π⁰γ с энергией √s = 1.05-1.70 ГэВ
- Неточность можно описать растяжением $\alpha_b(\chi^2_{\pi\pi\gamma} \chi^2_{5\gamma}), \alpha_b = 1.05 \pm 0.01$
- Эта поправка была применена к сигнальному распределению. Для оценки ошибки параметр α_b добавлялся в подгонку с Гауссовым ограничением 0.05.
- Систематическая ошибка составила 3%

Систематическая ошибка за счет точности описания распределения для фона — 1%

Эффективность регистрации и рад. поправка

- При определении эффективности и рад.
 поправок предполагалось, что в сечении доминируют вклады e⁺e⁻ → φη, ρη,ωη
- Интерференция не учитывалась
- Ниже 1.57 ГэВ основной вклад дает рп, а выше 1.57 ГэВ фп
- Внутри каждого из 6 интервалов
 эффективность и рад. поправка
 усреднялись

$$\sigma = \frac{N_{\eta\eta\nu}}{L\varepsilon(1+\delta)}, \qquad \sigma_{\nu is,j}(s_i) = \int_{0}^{x_{max}} F(x,s_i)\sigma_j(s_i(1-x)),$$

$$(1+\delta) = \sum_{i,j} L_i \sigma_{\nu is,j}(s_i) / \sum_{i,j} L_i \sigma_j(s_i), \quad \varepsilon = \sum_{i,j} \varepsilon_{i,j} L_i \sigma_{\nu is,j}(s_i) / \sum_{i,j} L_i \sigma_{\nu is,j}(s_i).$$

Систематические ошибки

- Варьировались отдельные вклады
- Добавлялся интерференционный член между р<mark>η,</mark>ω<mark>η</mark>
- Добавлялись вклады e⁺e⁻ → f₀(1500)γ, f'₂(1525)γ
- Систематическая неопределенность за счет условий отбора
 - За счет $\chi^{2}_{\eta\pi\gamma}$ $\chi^{2}_{5\gamma}$ 10%
 - За счет других условий 5%

Усредненная эффективность регистрации (%)

ГэВ	1.17-1.32	1.32-1.57	1.57-1.80	1.80-2.0
	33.4	36.8	40.0	36.0
$\chi^{2}_{\eta\pi\gamma}-\chi^{2}_{5\gamma}>30$	17.8	20.7	27.8	25.8
χ² _{ηπγ} - χ ² _{5γ} > 100	9.3	12.4	20.8	20.2

Сечение процесса е⁺е⁻→ηηγ

Cross section (pb)

50

40

30

Источник	
Светимость	2%
Условия отбора	5-11%
Вычитание фона	1%
Форма χ² _{ηπγ} - χ² _{5γ}	3%
Модельная зависимость	2-10%
Итого	12-23%

- Поправка к эффективности за счет неточности описания конверсии фотонов (-0.79±0.02)%
- Точность определяется стат. ошибкой
- Измеренное сечение хорошо
- согласуется с измерением КМД-3 для e⁺e⁻ → φη, φ→K⁺K⁻
- Также оно хорошо согласуется с теоретической моделью

This work

e⁺e⁻→φη (CMD-3)

s (GeV)

Поиск вкладов радиационных процессов

- Наиболее вероятные дополнительные вклады e⁺e⁻ → f₀(1500)γ, f'₂(1525)γ
- Для увеличения чувствительности было добавлено условие χ²φη - χ²ηηγ > 20
- Сигнала от радиационных процессов не обнаружено
- Для вычисления верхних пределов использовалась техника CL_s
- Распределение ²_{ηηγ} ²_{5γ} для данных сравнивалось с ожидаемым распределением для фона и сигнала
- В качестве эффективности использовалась среднее эффективностей для е⁺е⁻ → f₀(1500)γ и f′₂(1525)γ
- Их полуразность использовалась в качестве оценки модельной зависимости, она составила 6%
- Ошибка ожидаемого числа фоновых событий не превышает 10%

Поиск вкладов радиационных процессов

Предсказания кварковой модели: Г(ф(1680)→f′₂(1525)γ) = 199 кэВ Г(ρ(1700)→f₀(1500)γ) = 98 - 520 кэВ

F.E.Close, A.Donnachie, Y.S.Kalashnikova Phys.Rev.D 65, 092003 (2002)

Этим ширинам соответствуют сечения $\sigma(e^+e^- \rightarrow f'2(1525)\gamma \rightarrow \eta\eta\gamma) = 1.7 \, пб$ $\sigma(e^+e^- \rightarrow f'2(1525)\gamma \rightarrow \eta\eta\gamma) = 0.4-1.9 \, n6$

- В области энергии √s = 1.17-2.00 ГэВ впервые измерено сечение процесса е⁺е⁻ → ηηγ
- Основной промежуточный механизм в этой области энергии е⁺e⁻ → фη
- Измеренное сечение в хорошем согласии с измерением КМД-3 для процесса е⁺е⁻ → фŋ, ф→К⁺К⁻
- Сигнал от радиационных процессов не обнаружен
- Статья выложена в arxiv: https://arxiv.org/abs/2110.05845