BINP colliders

Past & present

Yu.M.Shatunov

04.05 2018 Novosibirsk

1958 - 2018

Decision in1957 r.

E = 90 MeV - 160 MeV; $L = 5*10^{27} \text{ cm}^{-2}\text{s}^{-1}$

?

Start of discussions about electron-positron collider (1959)

В.И.Векслер

VEP-1 bird's view

в работе

B31-1 Experiments with colliding beams 1965-1967 simultaneously with Prinston-Stanford rings: electron-electron scattering; discovery of double Bremstralung

Study of "beam-beam" effects and "machine" nonlinear resonances

Layout of VEPP-2 complex

```
E=2\times700 \text{ MeV}
L=4\times10^{28} \text{ cm}^{-2}\text{s}^{-1}
```


ИЛУ+Б-ЗМ (1965-2014)

VEPP-2 main physical results

First observation vector meson production (ρ) in e+e- annihilation.

 ρ , ω , and ϕ - mesons study.

First observation of two-photons events.

Discovery of multi-hadron production in e+e- annihilation.

Observation of electron radiative polarization (simultaneously with ACO)

and absolute energy calibration by resonance depolarization. (theory & experiment)

VEPP-2M (1972-2000)

radiative polarization 1.0 ζ 0.8 0.6 $\zeta_{max} = 0.90 \pm 0.03$ τ.= 3400±400 сек. 0.4 0.2 t (сек.) 0.0 2000 6000 10000 14 000 4000 8000 12000 0

Spin-flip + radiative polarization

VEPP-2M Checkout of CPT theorem for e^+e^-

Energy calibration: E=509.325±0.005 M₃B

Particle mass measurements at VEPP-2M

Particle	E, MeV	Accuracy, $\Delta E/E$	Detector	Years
ω	781.78±0.10	1.2.10-4	CMD	1987
ρ	775.9±1.1	3.2.10-4	OLYA	1985
φ	1019.42±0.06	6.10-2	CMD-2	1995
K ⁰	497.661±0.033	1.5.10-5	CMD	1987
K+	493.670±0.029	1.5.10-5	emulsion	1979

VEPP-2M

ВЭПП-2M results (world лидер during 25 years!)

Hadron production in e⁺e⁻ annihilation (detectors SND & CMD-2)

Hadron contribution in the muon (g-2)

$$a_{\mu}(\text{had}) = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^2 \int_{4m_{\pi}^2}^{\infty} \frac{ds}{s^2} K(s) \left(\frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)}\right)$$

< 1% systematic error for most of the channels is needed!

Absolute energy calibration $\simeq 10^{-4}$ must be done in whole energy range

Round beams - increasing of luminosity

Number of bunches (i.e. collision frequency)
 Bunch-by-bunch luminosity

$$L = \frac{\pi \gamma^2 \xi_x \xi_y \varepsilon_x f}{r_e^2 \beta_y^*} \left(1 + \frac{\sigma_y}{\sigma_x} \right)^2 \longrightarrow L = \frac{4\pi \gamma^2 \xi^2 \varepsilon f}{r_e^2 \beta^*}$$

$$\checkmark \text{ Geometric factor (gain=4)}$$

$$\checkmark \text{ Beam-beam limit enhancement}$$

$$\checkmark \text{ IBS for low energy? worth life time!}$$

$$\xi_{x,y}; 0.2$$

Energy calibration

FIG. 5 (color online). The edge of the energy spectrum with the fit result $\chi^2/d.o.f = 773.0/745$, $E = 993.662 \pm 0.016$ MeV, $B = 2.3880 \pm 0.0044$ T, $\sigma = 810 \pm 40$ ppm.

VEPP-2000 (2010-2013)

VEPP-2000 complex upgrade (2014-2017)

Luminosity collection at VEPP-2000

-start up

VEPP-3: first beam 1973; где позитроны? Synchrotron radiation — G.M.Kulipanov

VEPP-4: first beam 1981; где позитроны?
Ψ and Ψ' masses measurement;
Detector MD-1 (1983-1986)
RF, new positron source; Energy 1.8 – 5.0 GeV;
Υ –family mass measurement

Why mass measurement?

•VEPP-4M has unique spin tune spread 10^{-7} at J/ ψ energy •Bench mark on the mass scale of elementary particles •Bench mark on the energy scale of a given collider (J/ ψ , ψ (2s) masses

used in BEPC-II τ - lepton mass experiment •Absolute calibration of momentum measurements in detector tracking systems

Particle mass measurements at VEPP-2M and VEPP-4:

USSR State award (1989) "Precise particle masses measurements at VEPP-2M and VEPP-4"

G.M.Tumaikin, Yu.A,Tikhonov, L.M.Kurdadze, V.A.Sidorov, I.Ya.Protopopov, A.N.Skrinsky, L.M.Barkov, A.P.Onuchin, V.V.Petrov, S.I.Mishnev, Yu,M,Shatunov, V.P.Smakhtin.

High precision particle mass measurements with KEDR at VEPP-4M

J/ψ mass measurement

EVTS	DOCUMENT ID
OUR AVERAGE	
±0.007	AULCHENKO
502	¹ ARTAMONO
±0.01	² ARMSTRON
±0.3 193	BAGLIN
	EVTS OUR AVERAGE ±0.007 ±0.01 ±0.3 193

DOCUMENT IDTECNCOMMENTAULCHENKO 03KEDR $e^+e^- \rightarrow hadrons$ 1 ARTAMONOV 00OLYA $e^+e^- \rightarrow hadrons$ 2 ARMSTRONG 93BE760 $\overline{p}p \rightarrow e^+e^-$ BAGLIN87SPEC $\overline{p}p \rightarrow e^+e^- X$

New result (preliminary)

 $M_{\rm Jhv}^{\rm 2005} - M_{\rm Jhv}^{\rm 2002} = \, 7 \, \pm \, 10 \pm 17 \, keV$

PLB573(2003) 63-79 Nuclear Physica B (Proc. Suppl.) 181-182 (2008)353

$\psi(3770)$ mass measurement

Nuclear Physica B (Proc. Suppl.) 181-182 (2008)353. For compatibility, the resonance fitting form is same to that used in MARK1, MARK2, DELCO, BES(2005) experiments.

ψ(2S) mass measurement

Detter In	inv I	A 110 - 110	and the second second	and other and	_	TRACING STREET	2.52000046-147
3686.09	±0.04	OUR FIT	Error in	ncludes scale factor o	f 1.6	÷	
3686.093	±0.034	OUR AVE	RAGE	Error includes scale	factor	of 1.4	See the ideogram.
below.							
3696.111	± 0.025	±0.009		AULCHENKO	03	KEDR	$e^+e^- \rightarrow hadrons$
3685.95	±0.10		413	¹ ARTAMONOV	00	OLYA	$e^+e^- \rightarrow hadrons$
3685.98	+0.09	±0.04		² ARMSTRONG	938	E760	pp→ e+e-

D[±] and D⁰ mass measurement

Nuclear Physica B (Proc. Suppl.) 181-182 (2008)353.

VEPP-4M

Detector KEDR (1991) + system of scattered electron and positron detecting with $\Delta p/p \ 0.05 < 0.5$ is advantage for study of two photon processes. Luminosity with new injection complex?

Two next speakers know the answer.....

Thanks for attention!